91 research outputs found

    A generalized Gaeta's Theorem

    Full text link
    We generalize Gaeta's Theorem to the family of determinantal schemes. In other words, we show that the schemes defined by minors of a fixed size of a matrix with polynomial entries belong to the same G-biliaison class of a complete intersection whenever they have maximal possible codimension, given the size of the matrix and of the minors that define them.Comment: 17 pages, submitte

    The G-biliaison class of symmetric determinantal schemes

    Get PDF
    We consider a family of schemes, that are defined by minors of a homogeneous symmetric matrix with polynomial entries. We assume that they have maximal possible codimension, given the size of the matrix and of the minors that define them. We show that these schemes are G-bilinked to a linear variety of the same dimension. In particular, they can be obtained from a linear variety by a finite sequence of ascending G-biliaisons on some determinantal schemes. In particular, it follows that these schemes are glicci. We describe the biliaisons explicitely in the proof of the main theorem.Comment: 20 pages, reference addeded, a few mistakes fixed, final version to appear on J. Algebr

    The complexity of MinRank

    Get PDF
    In this note, we leverage some of our results from arXiv:1706.06319 to produce a concise and rigorous proof for the complexity of the generalized MinRank Problem in the under-defined and well-defined case. Our main theorem recovers and extends previous results by Faug\`ere, Safey El Din, Spaenlehauer (arXiv:1112.4411).Comment: Corrected a typo in the formula of the main theore

    Scalar multiplication in compressed coordinates in the trace-zero subgroup

    Get PDF
    We consider trace-zero subgroups of elliptic curves over a degree three field extension. The elements of these groups can be represented in compressed coordinates, i.e. via the two coefficients of the line that passes through the point and its two Frobenius conjugates. In this paper we give the first algorithm to compute scalar multiplication in the degree three trace-zero subgroup using these coordinates.Comment: 23 page

    Solving multivariate polynomial systems and an invariant from commutative algebra

    Get PDF
    The complexity of computing the solutions of a system of multivariate polynomial equations by means of Gr\"obner bases computations is upper bounded by a function of the solving degree. In this paper, we discuss how to rigorously estimate the solving degree of a system, focusing on systems arising within public-key cryptography. In particular, we show that it is upper bounded by, and often equal to, the Castelnuovo Mumford regularity of the ideal generated by the homogenization of the equations of the system, or by the equations themselves in case they are homogeneous. We discuss the underlying commutative algebra and clarify under which assumptions the commonly used results hold. In particular, we discuss the assumption of being in generic coordinates (often required for bounds obtained following this type of approach) and prove that systems that contain the field equations or their fake Weil descent are in generic coordinates. We also compare the notion of solving degree with that of degree of regularity, which is commonly used in the literature. We complement the paper with some examples of bounds obtained following the strategy that we describe

    Partial Spreads in Random Network Coding

    Full text link
    Following the approach by R. K\"otter and F. R. Kschischang, we study network codes as families of k-dimensional linear subspaces of a vector space F_q^n, q being a prime power and F_q the finite field with q elements. In particular, following an idea in finite projective geometry, we introduce a class of network codes which we call "partial spread codes". Partial spread codes naturally generalize spread codes. In this paper we provide an easy description of such codes in terms of matrices, discuss their maximality, and provide an efficient decoding algorithm
    corecore